Nos sources

[1] Material Economics (2021). EU Biomass Use In A Net-Zero Economy - A Course Correction for EU Biomass

[2] SNBC, La transition écologique et solidaire vers la neutralité carbone

[3] Science Based Targets Initiative (SBTi); Trove Research analysis

[4] Sylvera, 2022 Carbon Credit Crunch Report

[5] D. M. Nguyen, A.-C. Grillet, Q.-B. Bui, T. M. H. Diep, et M. Woloszyn, « Building bio-insulation materials based on bamboo powder and bio-binders », Constr. Build. Mate, vol. 186, p. 686‑698, oct. 2018, doi: 10.1016/j.conbuildmat.2018.07.153.

[6] C. Gauss, V. D. Araujo, M. Gava, J. Cortez-Barbosa, et H. Savastano Junior, « Bamboo particleboards: recent developments », Pesqui. Agropecu. Trop., vol. 49, p. e55081, 2019, doi: 10.1590/1983-40632019v4955081.

[7] D. Biswas, S. Kanti Bose, et M. Mozaffar Hossain, « Physical and mechanical properties of urea formaldehyde-bonded particleboard made from bamboo waste », International Journal of Adhesion and Adhesives, vol. 31, no 2, p. 84‑87, mars 2011, doi: 10.1016/j.ijadhadh.2010.11.006.

[8] T. K. Dhamodaran, R. Gnanaharan, et K. Sankara Pillai, « Bamboo for pulp and paper - A state of the art review », KERALA FOREST RESEARCH INSTITUTE, 2003.

[9] H. P. S. Abdul Khalil, I. U. H. Bhat, M. Jawaid, A. Zaidon, D. Hermawan, et Y. S. Hadi, « Bamboo fibre reinforced biocomposites: A review », Mater. Des., vol. 42, p. 353‑368, déc. 2012, doi: 10.1016/j.matdes.2012.06.015.

[10] H. Qiao, Y. Wang, Z. Ma, M. Han, Z. Zheng, et J. Ouyang, « In-depth investigation of formic acid pretreatment for various biomasses: Chemical properties, structural features, and enzymatic hydrolysis », Bioresour. Technol., vol. 374, p. 128747, avr. 2023, doi: 10.1016/j.biortech.2023.128747.

[11] L. Xu et al., « Biochar application increased ecosystem carbon sequestration capacity in a Moso bamboo forest », For. Ecol. Manag., vol. 475, p. 118447, nov. 2020, doi: 10.1016/j.foreco.2020.118447.

[12] S. Rangaraj et R. Venkatachalam, « A lucrative chemical processing of bamboo leaf biomass to synthesize biocompatible amorphous silica nanoparticles of biomedical importance », Appl. Nanosci., vol. 7, no 5, p. 145‑153, juin 2017, doi: 10.1007/s13204-017-0557-z.

[13] N. Chongtham, M. S. Bisht, O. Santosh, H. K. Bajwa, et A. Indira, « Mineral elements in Bamboo shoots and Potential role in Food Fortification », J. Food Compos. Anal., vol. 95, p. 103662, janv. 2021, doi: 10.1016/j.jfca.2020.103662.

[14] C. D. Montaño, « Potential of Bamboo for Renewable Energy: Main Issues and Technology Options », p. 117.

[15] L. Wang, J. Littlewood, et R. J. Murphy, « An economic and environmental evaluation for bamboo-derived bioethanol », RSC Adv., vol. 4, no 56, p. 29604‑29611, 2014, doi: 10.1039/C4RA05056H.

[16] U. Kakati et al., « Sustainable utilization of bamboo through air-steam gasification in downdraft gasifier: Experimental and simulation approach », Energy, vol. 252, p. 124055, 2022, doi: https://doi.org/10.1016/j.energy.2022.124055.

[17] J. Q. Yuen, T. Fung, et A. D. Ziegler, « Carbon stocks in bamboo ecosystems worldwide: Estimates and uncertainties », For. Ecol. Manag., vol. 393, p. 113‑138, juin 2017, doi: 10.1016/j.foreco.2017.01.017.

[18] B. Bernal, L. T. Murray, et T. R. H. Pearson, « Global carbon dioxide removal rates from forest landscape restoration activities », Carbon Balance Manag., vol. 13, no 1, p. 22, déc. 2018, doi: 10.1186/s13021-018-0110-8.

[19] P. van der Lugt, T. ThangLong, et C. King, « Carbon sequestration and carbon emissions through bamboo forests and products », INBAR Working paper.

[20] Z. Ben-zhi, F. Mao-yi, X. Jin-zhong, Y. Xiao-sheng, et L. Zheng-cai, « Ecological functions of bamboo forest: Research and Application », J. For. Res., vol. 16, no 2, p. 143‑147, juin 2005, doi: 10.1007/BF02857909.

[21] L. Christanty, D. Mailly, et J. P. Kimmins, « “Without bamboo, the land dies”: Biomass, litterfall, and soil organic matter dynamics of a Javanese bamboo talun-kebun system », For. Ecol. Manag., vol. 87, no 1‑3, p. 75‑88, oct. 1996, doi: 10.1016/S0378-1127(96)03834-0.

[22] D. Mailly, L. Christanty, et J. P. Kimmins, « ‘Without bamboo, the land dies’: nutrient cycling and biogeochemistry of a Javanese bamboo talun-kebun system », For. Ecol. Manag., vol. 91, no 2‑3, p. 155‑173, avr. 1997, doi: 10.1016/S0378-1127(96)03893-5.

[23] Y. Xu, R. Huang, B. Zhou, et X. Ge, « Fine-Root Decomposition and Nutrient Return in Moso Bamboo (Phyllostachys pubescens J.Houz.) Plantations in Southeast China », Front. Plant Sci., vol. 13, p. 735359, févr. 2022, doi: 10.3389/fpls.2022.735359.

[24] L.-H. Tu et al., « Litterfall, Litter Decomposition, and Nutrient Dynamics in Two Subtropical Bamboo Plantations of China », Pedosphere, vol. 24, no 1, p. 84‑97, févr. 2014, doi: 10.1016/S1002-0160(13)60083-1.

[25] C. Li et al., « Rhizome extension characteristics, structure and carbon storage relationships with culms in a 10-year moso bamboo reforestation period », For. Ecol. Manag., vol. 498, p. 119556, oct. 2021, doi: 10.1016/j.foreco.2021.119556.

[26] J. Piouceau et J. Morel, « Bamboo Plantations for Phytoremediation of Pig Slurry: Plant Response and Nutrient Uptake », p. 17, 2020.

[27] F. Bian, Z. Zhong, X. Zhang, C. Yang, et X. Gai, « Bamboo – An untapped plant resource for the phytoremediation of heavy metal contaminated soils », Chemosphere, vol. 246, p. 125750, mai 2020, doi: 10.1016/j.chemosphere.2019.125750.

[28] I. Dimitriou, C. Baum, G. Busch, et U. Schulz, « Quantifying environmental effects of Short Rotation Coppice (SRC) on biodiversity, soil and water ».

[29] A. J. Haughton et al., « Dedicated biomass crops can enhance biodiversity in the arable landscape », GCB Bioenergy, vol. 8, no 6, p. 1071‑1081, nov. 2016, doi: 10.1111/gcbb.12312.

[30] S. P. P. Vanbeveren et R. Ceulemans, « Biodiversity in short-rotation coppice », Renew. Sustain. Energy Rev., vol. 111, p. 34‑43, sept. 2019, doi: 10.1016/j.rser.2019.05.012.

[31] V. Arfi, D. Bagoudou, N. Korboulewsky, et G. Bois, « Initial efficiency of a bamboo grove–based treatment system for winery wastewater », p. 9, 2009.

[32] S.-Y. Lu, C.-P. Liu, L.-S. Hwang, et C.-H. Wang, « Hydrological Characteristics of a Makino Bamboo Woodland in Central Taiwan », p. 14, 2007.

[33] X. Feng et al., « Mapping Large-Scale Bamboo Forest Based on Phenology and Morphology Features », Remote Sens., vol. 15, no 2, p. 515, janv. 2023, doi: 10.3390/rs15020515.

[34] H. Komatsu et al., « Stand-scale transpiration estimates in a Moso bamboo forest: II. Comparison with coniferous forests », For. Ecol. Manag., vol. 260, no 8, p. 1295‑1302, sept. 2010, doi: 10.1016/j.foreco.2010.06.040.

[35] R. Ichihashi et al., « Stand-scale transpiration of two Moso bamboo stands with different culm densities: TRANSPIRATION OF TWO BAMBOO STANDS WITH DIFFERENT CULM DENSITIES », Ecohydrology, vol. 8, no 3, p. 450‑459, avr. 2015, doi: 10.1002/eco.1515.

[36] Y. Isagi, T. Kawahara, K. Kamo, et H. Ito, « Net production and carbon cycling in a bamboo Phyllostachys pubescens stand », p. 12.

[37] W. Liese, « Bamboo as Carbon-Sink - Fact or Fiction ? ».

[38] W. Liese, The anatomy of bamboo culms. in Technical report, no. no. 18. Beijing: International Network for Bamboo and Rattan, 1998.

[39] Kleinhenz, Midmore, Walsh, et Milne, « A case study on the effects of irrigation and fertilization on soil water and soil nutrient status, and on growth and yield of bamboo (Phyllostachys pubescens) shoots », J. Bamboo Rattan, vol. 2, no 3, p. 281‑293, nov. 2003, doi: 10.1163/156915903322555568.

[40] V. Kleinhenz et D. J. Midmore, « Aspects of bamboo agronomy », in Advances in Agronomy, vol. 74, Academic Press, 2001, p. 99‑153. doi: 10.1016/S0065-2113(01)74032-1.

Webdesign & identité visuelle réalisés par le studio oblique.fr
Crédits images : @unsplash / @horizom